
1 
 

Phys 410 
Fall 2015 

Lecture #12 Summary 
8 October, 2015 

 

Going back to the shortest-distance-in-a-plane problem, we see that the function 𝑓 in this 
case is 𝑓 = �1 + (𝑦′)2.  In this case 𝑓 does not depend explicitly on𝑦, hence we can write 
𝜕𝜕
𝜕𝑦′

= 𝑦′
�1+(𝑦′)2

= 𝐶, a constant.  This can be reduced to 𝑦′(𝑥) = 𝑚, where 𝑚 is another 

constant.  Integrating both sides with respect to 𝑥, we find 𝑦(𝑥) = 𝑚𝑥 + 𝑏, which is the 
famous equation for a straight line.  Hence the shortest distance between two points in a flat 
plane is a straight line.  The Fermat’s principle problem can be solved in a similar way once 
the index of refraction distribution 𝑛(𝑥,𝑦), and the end points, are specified. 

We then did the example of the Brachistochrone problem.  A particle falls from rest 
under the influence of gravity following a frictionless track to a final location.  The question 
is: what track design will get the particle to the final location in the shortest time?  The 
particle starts at the origin (x=0, y=0) and falls to a point (x2, y2), with x2 > 0 and y2 > 0 (note 
that positive y is in the ‘down’ direction).  The time to travel is given by 𝑇𝑇𝑚𝑇(1 → 2) =

∫ 𝑑𝑑2
1 = ∫ 𝑑𝑑

𝑣
2
1 = ∫ �𝑑𝑑2+𝑑𝑦2

𝑣
2
1 .  The speed is found from conservation of energy: 𝑣 = �2𝑔𝑦, 

leading to 𝑇𝑇𝑚𝑇(1 → 2) = 1
�2𝑔

∫
�1+(𝑑′)2

√𝑦
𝑑𝑦𝑦2

0 , where we are using the y-coordinate of the 

particle as the independent variable and 𝑥′ = 𝑑𝑥/𝑑𝑦.  We are now looking for the trajectory 
𝑥(𝑦) that minimizes the time: 𝑇𝑇𝑚𝑇(1 → 2).  This integral will be made stationary when the 

integrand 𝑓(𝑥, 𝑥′,𝑦) obeys the Euler-Lagrange equation, which in this case is: 𝜕𝜕
𝜕𝑑
− 𝑑

𝑑𝑦
𝜕𝜕
𝜕𝑑′

=

0.  The result is a differential equation for 𝑥(𝑦): 𝑥′ = �
𝑦

2𝑎−𝑦
, where 𝑎 is a constant 

introduced from the Euler-Lagrange equation.  We can integrate this equation with the 
change of variables 𝑦 = 𝑎(1 − cos𝜃), yielding 𝑥 = 𝑎(𝜃 − sin𝜃) + 𝐶.  This describes a 
cycloid curve (our cycloid is an upside-down version of the one on this web site).  The 
particle making the shortest-time fall will follow the cycloid trajectory. 

In general, it is not always possible to parameterize the trajectory of a particle with a 
simple one-to-one functional relationship such as 𝑦(𝑥) or 𝑥(𝑦).  In this case one would like 
to parameterize the trajectory with functions such as (𝑥(𝑢),𝑦(𝑢)), where 𝑢 acts as the 
parameter.  The Euler-Lagrange equation can be generalized to handle this situation.  
Consider the integral 𝑆 = ∫ 𝑓[𝑥(𝑢),𝑥′(𝑢),𝑦(𝑢),𝑦′(𝑢),𝑢]𝑑𝑢𝑢2

𝑢1
.  To make it stationary will 

yield two Euler-Lagrange equations: 𝜕𝜕
𝜕𝑑
− 𝑑

𝑑𝑢
𝜕𝜕
𝜕𝑑′

= 0 and 𝜕𝜕
𝜕𝑦
− 𝑑

𝑑𝑢
𝜕𝜕
𝜕𝑦′

= 0.   

http://en.wikipedia.org/wiki/Cycloid
http://en.wikipedia.org/wiki/Cycloid
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We then showed that Newton’s second law of motion can be re-stated as a set of Euler-
Lagrange equations for an integrand known as the Lagrangian ℒ = 𝑇 − 𝑈, where 𝑇 is the 
kinetic energy and 𝑈 is the potential energy.  The integral that is made stationary is called the 
action: 𝑆 = ∫ℒ 𝑑𝑑.  Hamilton’s principle states that the actual motion of the particle will be 
the one that leaves this integral stationary.  The Lagrangian can be written in terms of any set 
of unique (generalized) coordinates (𝑞1,𝑞2, 𝑞3).  One can define a generalized force as 𝜕ℒ

𝜕𝑞𝑖
, 

and the generalized momentum as 𝜕ℒ
𝜕𝑞𝑖′

.  They are related through the Euler-Lagrange 

equation as “generalized force” = time rate of change of “generalized momentum”.  Note that 
these generalized quantities do not necessarily have the dimensions of force or momentum!   

Feynman’s path integral formulation of quantum mechanics considers all possible 
trajectories between the initial point and the final point.  One calculates a transition 
amplitude as a sum over all trajectories of a weighting function.  The weight of each 
trajectory is given the same magnitude, but a variable phase, as 𝑇𝑖𝑖/ℏ, where 𝑆 is the action 
for that trajectory and ℏ is Planck’s constant divided by 2𝜋, which is sometimes known as 
the quantum of action.  This is a generalization of Hamilton’s principle, which of course 
specifies only a single classical trajectory. 

We considered the Lagrangian in polar coordinates for a single particle of mass 𝑚 acted 
upon by a conservative force in two dimensions.  The Lagrangian is ℒ�𝑟, �̇�,𝜙, �̇�, 𝑑� =
𝑚
2
��̇�2 + 𝑟2�̇�2� − 𝑈(𝑟,𝜙).  The Euler-Lagrange equation for 𝑟 yields −𝜕𝜕

𝜕𝜕
= 𝑚��̈� − 𝑟�̇�2�.  

This is Newton’s second law for radial motion, where the first term on the right hand side is 
the radial acceleration, while the second is the centripetal acceleration.  The Euler-Lagrange 
equation for 𝜑 yields −𝜕𝜕

𝜕𝜕
= 𝑑

𝑑𝑑
(𝑚𝑟2�̇�).  This is a statement that the torque acting on the 

particle �− 𝜕𝜕
𝜕𝜕

= 𝑟𝐹𝜕� is equal to the time rate of change of the angular momentum.  In other 

words it is a statement of Newton’s second law for rotational motion. 


